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Abstract

In this study, we attempt to obtain higher-order solutions of the means and (co)variances of hydraulic head for

saturated flow in randomly heterogeneous porous media on the basis of the combination of Karhunen–Lo�eve de-

composition, polynomial expansion, and perturbation methods. We first decompose the log hydraulic conductivity

Y ¼ lnKs as an infinite series on the basis of a set of orthogonal Gaussian standard random variables {ni}. The co-

efficients of the series are related to eigenvalues and eigenfunctions of the covariance function of log hydraulic con-

ductivity. We then write head as an infinite series whose terms hðnÞ represent head of nth order in terms of rY , the

standard deviation of Y , and derive a set of recursive equations for hðnÞ. We then decompose hðnÞ with polynomial

expansions in terms of the products of n Gaussian random variables. The coefficients in these series are determined by

substituting decompositions of Y and hðnÞ into those recursive equations. We solve the mean head up to fourth-order in

rY and the head variances up to third-order in r2
Y . We conduct Monte Carlo (MC) simulation and compare MC results

against approximations of different orders from the moment-equation approach based on Karhunen–Lo�eve decom-

position (KLME). We also explore the validity of the KLME approach for different degrees of medium variability and

various correlation scales. It is evident that the KLME approach with higher-order corrections is superior to the

conventional first-order approximations and is computationally more efficient than the Monte Carlo simulation.
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1. Introduction

Owing to heterogeneity of geological formations and incomplete knowledge of medium properties, the
medium properties may be treated as random space functions and the equations describing flow and
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transport in these formations become stochastic. Stochastic approaches to flow and transport in hetero-

geneous porous media have been extensively studied in the last two decades, and many stochastic models

have been developed [3,5,6,30].
Monte Carlo (MC) simulation is a conceptually straightforward method for solving these stochastic

partial differential equations. It entails generating a large number of equally likely random realizations of

the parameter fields, solving deterministic flow and transport equations for each realization, and averaging

the results over all realizations to obtain sample moments of the solution. This approach has the advantages

of applying to a broad range of both linear and nonlinear flow and transport problems. But, it also has a

number of potential drawbacks [15,26]. A major disadvantage of the Monte Carlo method, among others,

is the requirement for large computational effort. To properly resolve high frequency space–time fluctua-

tions in random parameters, it is necessary to employ fine numerical grids in space–time. Therefore,
computational effort for each realization is usually large, especially if both physical and chemical hetero-

geneities, as well as uncertainties in initial and boundary conditions, are considered. To ensure the con-

vergence of the sample output moments to their theoretical ensemble values, a large number of realizations

are often required (typically a few thousand realizations, depending on the degree of medium heteroge-

neity), which poses a significant computational burden.

An alternative to Monte Carlo simulations is the approach based on moment equations, the essence of

which is to derive a system of deterministic partial differential equations governing the statistical moments

of the flow and transport quantities (usually the first two moments, mean and covariance), and then solve
them analytically or numerically [1,4,5,7,14–17,21,22,24,27,29,30].

The moment equations are usually derived with the method of perturbation. In the perturbation-based

approach, the medium properties, such as log hydraulic conductivity Y , can be written as Y ¼ hY i þ Y 0, and

similarly the dependent variables, such as hydraulic head h, can be decomposed as h ¼ hhi þ h0. After

substituting these decompositions into the original stochastic equations with some mathematical manip-

ulation one obtains equations for mean head and head perturbation. The mean equation cannot be solved

directly because it contains some cross-covariance functions between head and medium properties, such as

hY 0h0i. The equation for hY 0h0i in turn will involve some third-order terms. One can either write an implicit
equation for the head perturbation or equivalently express it explicitly as integrals whose integrands

contain Green�s function and other higher-order cross-covariance terms. The head covariance equation is

then formulated from the equation for head perturbation.

Similarly, one can expand hydraulic head as an infinite series in terms of the standard deviation of the

medium property. More specifically, for saturated flow as considered in this study, head is expanded as an

infinite series h ¼
P1

n¼0 h
ðnÞ in terms of rY , the standard deviation of the log hydraulic conductivity.

Substituting the decomposition into the original equations yields a series of recursive equations in which the

equation for hðnÞ involves lower order terms hðiÞ, i ¼ 1; 2; . . . ; n� 1. In most existing models, the mean head
is approximated up to second-order in rY , and the head (co)variance is approximated up to first-order in r2

Y ,

i.e., Chðx; yÞ ¼ hhð1ÞðxÞhð1ÞðyÞi. In computing the head covariance up to first-order in r2
Y , one needs to solve

deterministic equations that are similar to the original equation about 2N times (N being the number of grid

nodes): N times for solving CYh and about N time for Ch. Including higher-order terms is possible, but it will

increase the computational effort dramatically.

Though in many cases this approach works quite well for relatively large variations in the medium

properties [18,20,26,32], this approach in general is restricted to small variabilities of medium properties.

In this study, we attempt to obtain higher-order terms of the mean and variance of head based on the
combination of Karhunen–Lo�eve decomposition and perturbation methods. The application of Karhunen–

Lo�eve decomposition to solving stochastic boundary value problems has been pioneered by Ghanem and

his coauthors [8–13,25] and further developed by Xiu and Karniadakis [28]. The essence of their technique

includes discretizing the independent random process (e.g., log hydraulic conductivity) using Karhunen–

Lo�eve expansion and representing the dependent stochastic process (hydraulic head or concentration) using
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the polynomial chaos basis. The deterministic coefficients of the dependent process in the polynomial chaos

expansion are governed by a set of coupled equations and calculated via a weighted residual procedure.

Roy and Grilli [23] combined the Karhunen–Lo�eve decomposition and the perturbation methods to solve
the steady state flow equation and obtained the mean head to first-order in rY and the head variance to

first-order in r2
Y . In this study, we aim to derive and evaluate higher-order approximations for the mean and

(co)variance of head. Specifically, with the combination of Karhunen–Lo�eve decomposition and pertur-

bation methods we evaluate the mean head up to fourth-order in rY and the head variances up to third-

order in r2
Y . We also explore the validity of this approach for different degrees of medium variability and

various correlation scales through comparisons against Monte Carlo simulations.
2. Stochastic differential equations

We consider transient water flow in saturated media satisfying the following continuity equation and

Darcy�s law:

Ss
ohðx; tÞ

ot
þr � qðx; tÞ ¼ gðx; tÞ; ð1Þ
qðx; tÞ ¼ �KsðxÞrhðx; tÞ; ð2Þ

subject to initial and boundary conditions

hðx; 0Þ ¼ H0ðxÞ; x 2 D; ð3Þ
hðx; tÞ ¼ Hðx; tÞ; x 2 CD; ð4Þ
qðx; tÞ � nðxÞ ¼ Qðx; tÞ; x 2 CN; ð5Þ

where q is the specific discharge (flux), hðx; tÞ is hydraulic head, H0ðxÞ is the initial head in the domain D,
Hðx; tÞ is the prescribed head on Dirichlet boundary segments CD, Qðx; tÞ is the prescribed flux across

Neumann boundary segments CN, nðxÞ ¼ ðn1; . . . ; ndÞT is an outward unit vector normal to the boundary

C ¼ CD [ CN, and Ss is the specific storage.

In this study, we treat KsðxÞ as a random function. Thus, Eqs. (1)–(5) become stochastic partial dif-

ferential equations, whose solutions are no longer deterministic values but probability distributions or
related statistical moments.
3. KL decomposition of log hydraulic conductivity

Let Y ðx;xÞ ¼ ln½Ksðx;xÞ� be a random process, where x 2 D and x 2 X (a probability space). Because

the covariance function CY ðx; yÞ ¼ hY 0ðx;xÞY 0ðy;xÞi is bounded, symmetric, and positive definite, it can be

decomposed into [2]

CY ðx; yÞ ¼
X1
n¼1

knfnðxÞfnðyÞ; ð6Þ

where kn and fnðxÞ are called eigenvalues and eigenfunctions, respectively, and fnðxÞ are orthogonal and

deterministic functions that form a complete set [19]
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Z
D
fnðxÞfmðxÞdx ¼ dnm; n;mP 1: ð7Þ

The mean-removed stochastic process Y 0ðx;xÞ can be expanded in terms of fnðxÞ as

Y 0ðx;xÞ ¼
X1
n¼1

nnðxÞ
ffiffiffiffiffi
kn

p
fnðxÞ; ð8Þ

where nnðxÞ are orthogonal Gaussian random variables with zero mean, i.e., hnnðxÞi ¼ 0, and

hnnðxÞnmðxÞi ¼ dnm. The expansion in Eq. (8) is called the Karhunen–Lo�eve expansion. It can be verified

that the covariance of Y 0ðx;xÞ defined in (8) is indeed CY . For convenience, thereafter, we suppress symbol

x in Y 0ðx;xÞ and in other dependent functions.

Eigenvalues and eigenfunctions of a covariance function CY ðx; yÞ can be solved from the following
Fredholm equation:Z

D
CY ðx; yÞf ðxÞdx ¼ kf ðyÞ: ð9Þ

For some special types of covariance functions, kn and fnðxÞ can be found analytically, as shown in Ap-

pendix A for a one-dimensional stochastic process with a covariance function CY ðx1; y1Þ ¼ r2
Y expð�jx1

�y1j=gÞ, where r2
Y and g are the variance and the correlation length of the process, respectively. For this

case, the eigenvalues and their corresponding eigenfunctions can be expressed as

kn ¼
2gr2

Y

g2w2
n þ 1

ð10Þ

and

fnðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðg2w2
n þ 1ÞL=2þ g

p gwn cosðwnxÞ½ þ sinðwnxÞ�; ð11Þ

where wn are positive roots of the characteristic equation

ðg2w2 � 1Þ sinðwLÞ ¼ 2gw cosðwLÞ: ð12Þ

Eq. (12) has infinite number of positive roots. Sorting these roots wn in an increasing order, which yields a

monotonically decreasing series of kn. From Eq. (6) or (8) we have r2
Y ¼

P1
n¼1 knf

2
n ðxÞ. Integrating this

equation yields Dr2
Y ¼

P1
n¼1 kn, where D is a measure of the domain size (length, area, or volume for 1D,

2D, or 3D domain, respectively), which means that the total variance r2
Y is decomposed into an infinite

summation of eigenvalues kn.
For problems in multidimension, if we assume that the covariance function CY ðx; yÞ is separable, for

example, CY ðx; yÞ ¼ r2
Y expð�jx1 � y1j=g1 � jx2 � y2j=g2Þ for a rectangular domain D ¼ fðx1; x2Þ : 06 x1

6 L1; 06 x2 6L2g, Eq. (9) can be solved independently for x1 and x2 directions to obtain eigenvalues kð1Þn and

kð2Þn , and eigenfunctions f ð1Þ
n ðx1Þ and f ð2Þ

n ðx2Þ. These eigenvalues and eigenfunctions are then combined to

form eigenvalues and eigenfunctions of CY :

kn ¼
4g1g2r

2
Y

½g21ðw
ð1Þ
i Þ2 þ 1�½g22ðw

ð2Þ
j Þ2 þ 1�

; ð13Þ
fnðxÞ ¼ fnðx1; x2Þ ¼ f ð1Þ
i ðx1Þf ð2Þ

j ðx2Þ; ð14Þ
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where wð1Þ
i and wð2Þ

j are two series of positive roots of (12) using parameters ðL1; g1Þ and ðL2; g2Þ, respectively.
Here we assume that indices i and j are mapping to index n in such a way that kn form a series whose terms

are nonincreasing. From Eq. (12) it is noted that its solutions wn � np=L for large n, which means that kn
defined in (10) decreases at a rate of 1=n2 and thus kn defined in (13) for two-dimensional problems decrease

at a rate of 1=ði2j2Þ. The convergence of series
P1

n¼1 1=n
2 ensures the convergence of infinity series in Eq.

(6). Thus Y 0 can be approximated by a finite number of terms in Eq. (8).

Eq. (8) provides an alternative way for random field generation. Once eigenvalues kn and their corre-

sponding eigenfunctions fn are found, a realization can be computed simply by independently sampling a

certain number of values zn from the standard Gaussian distribution Nð0; 1Þ and then computing
PN

n¼1 znffiffiffiffiffi
kn

p
fnðxÞ, where N is the number of terms needed to generate realizations with a given accuracy. The number

N depends on the ratio of correlation length to the domain size. This will be discussed further in Section 6.
Since eigenvalues

ffiffiffiffiffi
kn

p
and their eigenfunctions fnðxÞ always come together, in the following derivation,

we define new functions ~fnðxÞ ¼
ffiffiffiffiffi
kn

p
fnðxÞ and the tilde over fn is dropped for simplicity.
4. KL-based moment equations

For simplicity, in this study we assume that all initial and boundary conditions are deterministic. We

assume that the hydraulic conductivity KðxÞ follows a log normal distribution, and work with the log-
transformed variable Y ðxÞ ¼ lnðKðxÞÞ ¼ hY ðxÞi þ Y 0ðxÞ. The mean log saturated hydraulic conductivity

hY ðxÞi represents a relatively smooth unbiased estimate of the unknown random function Y ðxÞ. It may be

estimated using standard geostatistical methods, such as kriging, which produce unbiased estimates that

honor measurements and provide uncertainty measures for these estimates. Here we assume that the log

saturated hydraulic conductivity field may be conditioned on some measurement points, which means that

the field may be statistically inhomogeneous. In this case, the two-point covariance function CY ðx; yÞ de-
pends on the actual locations of two points x and y rather than their separation distance, and therefore, the

eigenvalues and eigenfunctions of CY ðx; yÞ, in general, have to be solved numerically.
Because the variability of hðx; tÞ depends on the input variabilities, i.e., variability of Y ðxÞ, one may

express hðx; tÞ as an infinite series as hðx; tÞ ¼ hð0Þ þ hð1Þ þ hð2Þ þ � � � In this series, the order of each term is

with respect to rY , the standard deviation of Y ðxÞ. After combining (1) and (2), substituting expansions of

hðx; tÞ and Y ðxÞ, and collecting terms at separate order, one can obtain the following equations with initial

and boundary conditions that govern the hydraulic head at different order in rY :

r2hð0Þðx; tÞ þ rhY ðxÞi � rhð0Þðx; tÞ ¼ � gðx; tÞ
KGðxÞ

þ Ss
KGðxÞ

ohð0Þðx; tÞ
ot

; ð15Þ
hð0Þðx; 0Þ ¼ H0ðxÞ; x 2 D; ð16Þ
hð0Þðx; tÞ ¼ Hðx; tÞ; x 2 CD; ð17Þ
rhð0Þðx; tÞ � nðxÞ ¼ �Qðx; tÞ=KGðxÞ; x 2 CN; ð18Þ

and for mP 1,

r2hðmÞðx; tÞ þ rhY ðxÞi � rhðmÞðx; tÞ ¼ Ss
KGðxÞ

Xm
k¼0

ð�1Þk

k!
½Y 0ðxÞ�k oh

ðm�kÞðx; tÞ
ot

�rY 0ðxÞ

� rhðm�1Þðx; tÞ � gðx; tÞ
m!KGðxÞ

½�Y 0ðxÞ�m; ð19Þ



778 D. Zhang, Z. Lu / Journal of Computational Physics 194 (2004) 773–794
hðmÞðx; 0Þ ¼ 0; x 2 D; ð20Þ
hðmÞðx; tÞ ¼ 0; x 2 CD; ð21Þ
rhðmÞðx; tÞ � nðxÞ ¼ � Qðx; tÞ
m!KGðxÞ

½�Y 0ðxÞ�m; x 2 CN: ð22Þ

We assume that hð1Þðx; tÞ can be expanded with the following polynomial expansion in terms of the or-

thogonal Gaussian random variables nn, n ¼ 1; 2; . . . ;

hð1Þðx; tÞ ¼
X1
n¼1

nnh
ð1Þ
n ðx; tÞ; ð23Þ

where hð1Þn ðx; tÞ, n ¼ 1; 2; . . . ; are deterministic functions to be determined. There are two ways to determine

hð1Þn ðx; tÞ. Multiplying nn to Eq. (23) and taking expectation yields hð1Þn ðx; tÞ ¼ hnnhð1Þðx; tÞi, which means that

hð1Þn ðx; tÞ can be determined simply by multiplying nn to Eqs. (19)–(22) with m ¼ 1, taking their expectation,
and then solving for hnnhð1Þðx; tÞi. Alternatively, substituting Eq. (23) and the expansion of Y 0ðxÞ into Eqs.

(19)–(22) with m ¼ 1 yields an infinite series in terms of nn, whose summation equals to zero. For example,

Eq. (19) becomes

X1
n¼1

nn r2hð1Þn ðx; tÞ
�

þrhY ðxÞi � rhð1Þn ðx; tÞ � Ss
KGðxÞ

ohð1Þn ðx; tÞ
ot

�
� fnðxÞ

ohð0Þðx; tÞ
ot

�

þrfnðxÞ � rhð0ÞðxÞ � gðx; tÞ
KGðxÞ

fnðxÞ
�
¼ 0: ð24Þ

Because of orthogonality of set nn, n ¼ 1; 2; . . . ; all coefficients of this infinite series have to be zero, which

leads to equations with initial and boundary conditions for hð1Þn ðx; tÞ:

r2hð1Þn ðx; tÞ þ rhY ðxÞi � rhð1Þn ðx; tÞ ¼ Ss
KGðxÞ

ohð1Þn ðx; tÞ
ot

�
� fnðxÞ

ohð0Þðx; tÞ
ot

�

�rfnðxÞ � rhð0ÞðxÞ þ gðx; tÞ
KGðxÞ

fnðxÞ; ð25Þ
hð1Þn ðx; 0Þ ¼ 0; x 2 D; ð26Þ
hð1Þn ðx; tÞ ¼ 0; x 2 CD; ð27Þ
rhð1Þn ðx; tÞ � nðxÞ ¼ Qðx; tÞ
KGðxÞ

fnðxÞ; x 2 CN: ð28Þ

Recalling the definition of fnðxÞ, it is seen that all driving terms in Eqs. (25)–(28) are proportional to
ffiffiffiffiffi
kn

p
,

which decreases monotonically as n increases. This ensures that the magnitude of contribution of hð1Þn ðx; tÞ
to hð1Þðx; tÞ decreases with n in general. This also clearly indicates that hð1Þn ðx; tÞ are proportional to rY , the

standard deviation of log hydraulic conductivity.
To expand hð2Þðx; tÞ, we notice that by multiplying nn to Eqs. (19)–(22) of m ¼ 2 and taking ensemble

mean yields an equation with initial and boundary conditions for hnnhð2Þðx; tÞi that leads to the solution

hhð2Þðx; tÞnni � 0 for all nP 1, which means that hð2Þðx; tÞ cannot be expanded in terms of nn.
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Note that the set {ninj; iP jP 1}, are not orthogonal. For example, for any two elements of this set, nini
and njnj, we have hnininjnji ¼ 1 6¼ 0 for i 6¼ j. However, the set is linearly independent. In fact, covðninj;
nmnnÞ ¼ hninjnmnni � hninjihnmnni ¼ dimdjn þ dindjm 6¼ 0 only if the set of subscripts fi; jg is identical to the
set fm; ng. Therefore, we can expand hð2Þðx; tÞ as an infinite series in terms of ninj, iP jP 1, i.e., hð2Þðx; tÞ ¼P1

iP jP 1 ninj~h
ð2Þ
ij ðx; tÞ, where ~hð2Þij ðx; tÞ are deterministic functions. Though ninj and njni in the expansion are

the same term, for convenience in our presentation, we split this term into two terms with the same co-

efficients, i.e., hð2Þij ¼ hð2Þji ¼ ~hð2Þij =2 for i 6¼ j and hð2Þii ¼ ~hð2Þii , thus h
ð2Þðx; tÞ is formally written as

hð2Þðx; tÞ ¼
X1
i;j¼1

ninjh
ð2Þ
ij ðx; tÞ: ð29Þ

It can be verified that hhð2Þðx; tÞnni � 0 for all nP 1. It is important to mention here that the second-order

polynomial chaos expansion of Ghanem and Spanos [8], fninj � dij; i; j ¼ 1; 2; . . .g, or the second-order

generalized polynomial chaos expansion of Xiu and Karniadakis [28], are orthogonal and may be used as a

basis to expand hð2Þðx; tÞ. However, because hninj � diji � 0, the expansion hð2Þðx; tÞ ¼
P1

i;j¼1ðninj � dijÞ
hð2Þij ðx; tÞ results in hhð2Þðx; tÞi � 0. On the other hand, if we take ensemble mean of Eqs. (19)–(22) with

m ¼ 2, we have in general hhð2Þðx; tÞi 6¼ 0 unless the medium is homogeneous, which means that the latter

expansion does not satisfy equations Eqs. (19)–(22) of m ¼ 2 for flow in heterogeneous media.
Substituting (29) as well as expansions of Y 0ðxÞ and hð1Þðx; tÞ into equations Eqs. (19)–(22) of m ¼ 2 yields

an infinite series in terms of ninj whose summation equals to zero. Because elements in the set

fninj; i; j ¼ 1; 2; . . .g are linearly independent, all coefficients of this infinite series have to be zero, which

leads to equations for hð2Þij ðx; tÞ:

r2hð2Þij ðx; tÞ þ rhY ðxÞi � rhð2Þij ðx; tÞ ¼
Ss

KGðxÞ
ohð2Þij ðx; tÞ

ot

"
� 1

2
fiðxÞ

ohð1Þj ðx; tÞ
ot

� 1

2
fjðxÞ

ohð1Þi ðx; tÞ
ot

þ 1

2
fiðxÞfjðxÞ

ohð0Þðx; tÞ
ot

#
� gðxÞ
2KGðxÞ

fiðxÞfjðxÞ

� 1

2
rfiðxÞ � rhð1Þj ðx; tÞ � 1

2
rfjðxÞ � rhð1Þi ðx; tÞ; ð30Þ
hð2Þij ðx; 0Þ ¼ 0; x 2 D; ð31Þ
hð2Þij ðx; tÞ ¼ 0; x 2 CD; ð32Þ
rhð2Þij ðx; tÞ � nðxÞ ¼ � Qðx; tÞ
2KGðxÞ

fiðxÞfjðxÞ; x 2 CN: ð33Þ

Note that the term rY 0 � rhð1Þ in the second-order equations of (19)–(22) with m ¼ 2 can be written either
as
P1

i;j¼1 rfiðxÞ � rhð1Þj or equivalently as
P1

i;j¼1 rfjðxÞ � rhð1Þi . To make hð2Þij symmetric, we have written the

term that corresponds to rY 0 � rhð1Þ as a half of rfiðxÞ � rhð1Þj þrfjðxÞ � rhð1Þi in Eq. (30). A similar

treatment has been done for term Y 0ohð1Þ=ot. Because both fi and hð1Þi are proportional to
ffiffiffiffi
ki

p
, it is seen from

Eqs. (30)–(33) that all driving terms are proportional to
ffiffiffiffiffiffiffiffi
kikj

p
, i.e., proportional to r2

Y . The decrease offfiffiffiffiffiffiffiffi
kikj

p
as i and j increase ensures that Eqs. (30)–(33) need to be solved for only a small number of times. In

addition, because of symmetry, we only need to solve hð2Þij ðx; tÞ for iP j.
By multiplying ninj to the third-order equations of (19)–(22) and taking expectation, one obtains

equations for hninjhð3Þðx; tÞi, which lead to a trivial solution hninjhð3Þðx; tÞi ¼ 0. This implies that hð3Þðx; tÞ
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cannot be expanded in terms of ninj. However, if we multiply nn or ninjnk to (19)–(22) of m ¼ 3 and take

their expectations, respectively, trivial solutions for hnnhð3Þðx; tÞi and hninjnkhð3Þðx; tÞi do not exist, which

means that hð3Þðx; tÞ may be expanded as

hð3Þðx; tÞ ¼
X1
n¼1

nnh
ð3Þ
n ðx; tÞ þ

X1
i;j;k¼1

ninjnkh
ð3Þ
ijk ðx; tÞ: ð34Þ

Substituting Eq. (34) and decompositions of Y 0, hð1Þ and hð2Þ into Eqs. (19)–(22) of m ¼ 3 yields an infinite

series whose summation is zero. Because elements of the combined set of fnn; n ¼ 1; 2; . . .g and

fninjnk; i; j; k ¼ 1; 2; . . .g are linearly independent, all coefficients of the infinite series must be zero, which
immediately leads to homogeneous equations for hð3Þn ðx; tÞ with zero driving forces that yield hð3Þn ðx; tÞ � 0,

for all n. hð3Þijk ðx; tÞ satisfy the following equation with initial and boundary conditions:

r2hð3Þijk ðx; tÞ þ rhY ðxÞi � rhð3Þijk ðx; tÞ ¼
Ss

KGðxÞ
ohð3Þijk ðx; tÞ

ot

"
� 1

3

X
Pijk

fiðxÞ
ohð2Þjk ðx; tÞ

ot

þ 1

6

X
Pijk

fiðxÞfjðxÞ
ohð1Þk

ot
� 1

6
fiðxÞfjðxÞfkðxÞ

ohð0Þðx; tÞ
ot

#

þ gðxÞ
6KGðxÞ

fiðxÞfjðxÞfkðxÞ �
1

3

X
Pijk

rfiðxÞ � rhð2Þjk ðx; tÞ; ð35Þ
hð3Þijk ðx; 0Þ ¼ 0; x 2 D; ð36Þ
hð3Þijk ðx; tÞ ¼ 0; x 2 CD; ð37Þ
rhð3Þijk ðx; tÞ � nðxÞ ¼
Qðx; tÞ
6KGðxÞ

fiðxÞfjðxÞfkðxÞ; x 2 CN; ð38Þ

where summation
P

is over a subset of the permutation of fi; j; kg, in which repeated terms are excluded.

For example,
P

Pijk
rfi � rhð2Þjk ¼ rfi � rhð2Þjk þrfj � rhð2Þik þrfk � rhð2Þij . Here the rest of terms, such as

rfi � rhð2Þkj which is the same as rfi � rhð2Þjk , are not included.

It should be noted that coefficients hð3Þn in (34) are zero, simply because elements in set fnn; n ¼ 1; 2; . . .g
and those in set fninjnk; i; j; k ¼ 1; 2; . . .g are linearly independent. It is easy to show that, in general, we can

assume that hðmÞðx; tÞ can be expanded as

hðmÞðx; tÞ ¼
X1

i1;i2;...;im¼1

Ym
j¼1

nij

 !
hðmÞi1;i2;...;imðx; tÞ: ð39Þ

Substituting this expansion and decompositions of Y 0 and all lower order terms hðiÞ, i ¼ 1; 2; . . . ;m� 1, into

(19)–(22), one has

r2hðmÞi1;i2;...;imðx; tÞ þ rhY ðxÞi � rhðmÞi1;i2;...;imðx; tÞ ¼
Ss

KGðxÞ
Xm
k¼0

ð�1Þk ðm� kÞ!
m!

�
X
Pi1 ;...;im

Yk
j¼1

fij

 !
ohðm�kÞ

ikþ1;...;imðx; tÞ
ot

þ ð�1Þmþ1gðxÞ
m!KGðxÞ

�
Ym
j¼1

fijðxÞ �
1

m

X
Pi ;...;im

rfi1ðxÞ � rhðm�1Þ
i2;...;imðx; tÞ; ð40Þ
1
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hðmÞi1;i2;...;imðx; 0Þ ¼ 0; x 2 D; ð41Þ
hðmÞi1;i2;...;imðx; tÞ ¼ 0; x 2 CD; ð42Þ
rhðmÞi1;i2;...;imðx; tÞ � nðxÞ ¼
ð�1Þmþ1Qðx; tÞ

m!KGðxÞ
Ym
j¼1

fijðxÞ; x 2 CN: ð43Þ

We solve equations (40)–(43) up to fifth-order, i.e., m ¼ 5. Once we solved hð0Þðx; tÞ, hð1Þn ðx; tÞ, hð2Þij ðx; tÞ,
hð3Þijk ðx; tÞ, h

ð4Þ
ijklðx; tÞ, and hð5Þijklmðx; tÞ, we can directly compute mean head and head covariance without solving

equations for head covariance and the cross-covariance between log hydraulic conductivity and head

that are required in the traditional moment-equation-based approaches. Up to fifth-order in rY , head is

approximated by

hðx; tÞ �
X5
i¼0

hðiÞðx; tÞ; ð44Þ

which leads to an expression for mean head

hhðx; tÞi �
X5
i¼0

hhðiÞðx; tÞi ¼ hð0Þðx; tÞ þ
X1
i¼1

hð2Þii ðx; tÞ þ 3
X1
i;j¼1

hð4Þiijjðx; tÞ: ð45Þ

It is seen that hhð0Þðx; tÞi � hð0Þðx; tÞ is the mean head solution up to first-order in rY , the second term on the

right hand side of (45) represents the second-order (or third-order) correction to the first-order mean head,

and the third term is the fourth-order (or fifth-order) correction.

From (44) and (45), one can write the perturbation term up to fifth-order

h0ðx; tÞ ¼ hðx; tÞ � hhðx; tÞi �
X5
i¼1

hðiÞðx; tÞ � hhð2Þðx; tÞi � hhð4Þðx; tÞi; ð46Þ

where hhð2Þi ¼
P1

i¼1 h
ð2Þ
ii and hhð4Þi ¼ 3

P1
i;j¼1 h

ð4Þ
iijj. Eq. (46) leads to the cross-covariance between log hy-

draulic conductivity and head up to third-order in r2
Y (or, sixth-order in rY ),

CYhðx; y; sÞ ¼
X1
n¼1

fnðxÞhð1Þn ðy; sÞ þ 3
X1
i;j¼1

fiðxÞhð3Þijj ðy; sÞ þ
X1

i;j;k;l;m;n¼1

nijklmnfiðxÞhð5Þjklmnðy; sÞ; ð47Þ

and the head covariance

Chðx; t; y; sÞ ¼
X1
i¼1

hð1Þi ðx; tÞhð1Þi ðy; sÞ þ 2
X1
i;j¼1

hð2Þij ðx; tÞh
ð2Þ
ij ðy; sÞ þ 3

X1
i;j¼1

hð1Þi ðx; tÞhð3Þijj ðy; sÞ

þ 3
X1
i;j¼1

hð1Þi ðy; sÞhð3Þijj ðx; tÞ þ
X1

i;j;k;l;m;n¼1

nijklmn hð1Þi ðx; tÞhð5Þjklmnðy; sÞ
h

þ hð2Þij ðx; tÞh
ð4Þ
klmnðy; sÞ

þ hð3Þijk ðx; tÞh
ð3Þ
lmnðy; sÞ þ hð4Þijklðx; tÞhð2Þmnðy; sÞ þ hð5Þijklmðx; tÞhð1Þn ðy; sÞ

i
� hhð2Þðx; tÞihhð4Þðy; sÞi � hhð4Þðx; tÞihhð2Þðy; sÞi; ð48Þ

where nijklmn ¼ hninjnknlnmnni for brevity. Because fnn, n ¼ 1; 2; . . .g is a set of independent Gaussian ran-

dom variables, the hninjnknlnmnni term can be easily evaluated by counting the occurrence of each n and
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using relationships hn2kþ1
i i ¼ 0 and hn2ki i ¼ ð2k � 1Þ!!. For instance, hn1n22n

3
3i ¼ hn1ihn22ihn

3
3i ¼ 0 and hn21n

4
2i

¼ hn21ihn
4
2i ¼ 1!! � 3!! ¼ 3. Eq. (48) leads to the head variance up to third-order in r2

Y (or, sixth-order in rY )

r2
hðx; tÞ ¼

X1
i¼1

½hð1Þi ðx; tÞ�2 þ 2
X1
i;j¼1

½hð2Þij ðx; tÞ�
2 þ 6

X1
i;j¼1

hð1Þi ðx; tÞhð3Þijj ðx; tÞ

þ
X1

i;j;k;l;m;n¼1

nijklmn 2hð1Þi ðx; tÞhð5Þjklmnðx; tÞ
h

þ 2hð2Þij ðx; tÞh
ð4Þ
klmnðx; tÞ þ hð3Þijk ðx; tÞh

ð3Þ
lmnðx; tÞ

i

� 2hhð2Þðx; tÞihhð4Þðx; tÞi: ð49Þ

Here the first term in the right-hand side of (49) represents the head variance up to first-order in r2
Y , the

second and third terms are second-order (in r2
Y ) corrections, and the rest terms are the third-order (in r2

Y )
corrections. Once we solved for the head terms, the flux moments can be derived from (2).
5. Issues on numerical implementation

5.1. Numerical solution of Fredholm equations

In Section 3, we discussed the solution of the Fredholm equation, i.e., Eq. (9), in a special case of
separable covariance functions of log hydraulic conductivity Y ðxÞ in a rectangular domain. In general,

however, the simulated flow domain may be irregularly shaped and the covariance function may not be

separable. In this case, the eigenvalues and their corresponding eigenfunctions have to be solved numeri-

cally. Examples of such numerical algorithms include iterative methods and a Galerkin-type method. The

latter is described in [8]. The basic idea in this algorithm is to choose a complete set of functions

f/iðxÞ; i ¼ 1; 2; . . .g in the Hilbert space, express the eigenfunctions fn to be sought as truncated (finite)

linear combinations fn ¼
PN

i¼1 ain/iðxÞ, and to determine coefficients ain by forcing truncating errors to be

orthogonal to /iðxÞ; i ¼ 1; 2; . . . ;N . The readers are referred to [8] for details.
In the case that some measurements of Y ðxÞ are available, one may wish to condition the Y ðxÞ field on

these measurements. This can be done, for example, by kriging. The covariance function of the conditional

Y ðxÞ field between any two points in general depends on actual locations of these points rather than the

separation distance between two points. Roy and Grilli [23] developed an algorithm for computing ei-

genfunctions of conditional covariance of log hydraulic conductivity in a rectangular domain by assuming

that the unconditional covariance function is separable. Once the eigenvalues kn and eigenfunctions fn of

the unconditional Y ðxÞ are found (analytically), one can expands the eigenfunctions of the conditional Y ðxÞ
using fn (which form a complete orthogonal basis), and determine the coefficients of expansions by solving
an algebraic eigenvalue problem.

5.2. Computational efficiency of the KL-based approach

As mentioned in the introduction, for the conventional moment-equation-based approaches, to obtain

the head covariance up to first-order in r2
Y , one needs to solve both the cross-covariance CYhðx; y; sÞ and

head covariance Chðx; t; y; sÞ. At each time, both require to solve for N times an algebraic equation of N
unknows (N being the number of grid nodes). Therefore, one needs to solve the algebraic equation with N
unknows for about 2N times. If we want to find higher-order corrections, the computational burden in-

creases drastically. For instance, to obtain the head variance up to second-order in r2
Y , one may need to

solve equations for terms such as hY 0ðxÞY 0ðyÞh0ðz; hÞi (where h is time), which in general requires solving

linear algebraic equations of N unknows N 2 time for each h.
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In the KL-based perturbation approach, instead of solving the covariance equations we solve for the

head terms hðmÞi1;i2;...;im , which are given by linear algebraic equations with N unknows. Once with the head

terms, the first two moments of head can be obtained with simple algebraic operations. Because the
structure of the head term Eqs. (40)–(43) is the same as that of the moment equations for CYhðx; v; sÞ and
Chðx; t; v; sÞ (e.g., (4.13)–(4.14) of [30]), the computational effort for solving for hðmÞi1;i2;...;imðx; tÞ on a grid of N
nodes is more or less the same as that for Chðx; t; v; sÞ, or CYhðx; v; sÞ, for each reference point ðv; sÞ. Hence,

the effectiveness of KL-based approach largely depends on the number of times required to solve these

linear algebraic equations. Due to symmetry, to obtain hðmÞii;i2;...;im , where ij ¼ 1; n, the number of times re-

quired to solve linear algebraic equation with N unknows is Sm ¼ nðnþ 1Þ � � � ðnþ m� 1Þ=m!. For example,

for n ¼ 20, we need to solve (30)–(33) for hð2Þij for S2 ¼ 210 times.

Two important factors contribute to the efficiency of this KL-based moment-equation (KLME) ap-
proach, as shown numerically in the next section. First, the overall magnitudes of hðmÞii;i2;...;im decrease with

order m. This allows us to use a relatively low order approximation for small to moderate variability r2
Y . In

addition, for a fixed m, the magnitudes of hðmÞii;i2;...;im quickly approach zero (statistically) as indices increase,

which means that we can approximate hðmÞ with a relative small number of terms. For the case of a grid of

41� 41 mesh (i.e., 1681 nodes) as in our examples in the next section, up to first-order, the conventional

moment equation approach requires to solve the moment equations on the grid for 2N ¼ 3362 times while

the KL-based approach only needs to solve the head term equations for a few hundreds times on the same

grid. Therefore, for a moderate problem size (say, N P 400), the KL-based perturbation approach may be
much more efficient than the conventional perturbation approach. The relative efficiency of the KL-based

approach improves as the domain size increases.

The computational efforts of the KL-based approach can be reduced significantly if we take advantage

of the orthogonal Gaussian random variables fnng. For example, in computing second moment terms (e.g.,

head variance) up to third-order in r2
Y , terms hð5Þjklmn and hð1Þi always appear together as the coefficient of term

hninjnknlnmnni. As a result, if the set of indices fjklmng has more than one odd number of occurrences, the

term hð5Þjklmn does not need to be solved because hninjnknlnmnni � 0. For instance, the term hð5Þ1;3;4;4;5 can be

skipped because the set f1; 3; 4; 4; 5g has three indices that have odd number of occurrences. The contri-
bution of hð5Þ1;3;4;4;5 to head variance must be zero because hnin1n3n24n5i � 0, no matter what the index i is.

The deterministic coefficients hðmÞii;i2;...;im can be solved using either finite element or finite difference method,

which yields sets of linear algebraic equations in a form of Ax ¼ b. It should be noted that the coefficient

matrix A is always the same for all those equations for hðmÞii;i2;...;im .
6. Illustrative examples

In this section, we attempt to examine the validity of the proposed KLME approach in computing

higher-order head moments for flow in hypothetical saturated porous media, by comparing model results

with those from Monte Carlo simulations.

We consider a two-dimensional domain in a saturated heterogeneous porous medium. The flow domain

is a square of a size L1 ¼ L2 ¼ 10 ½L� (where L is any consistent length unit), uniformly discretized into

40� 40 square elements. The non-flow conditions are prescribed at two lateral boundaries. The hydraulic

head is prescribed at the left and right boundaries as 10:5 ½L� and 10:0 ½L�, respectively, which produces a

mean flow from the left to the right. The mean of the log hydraulic conductivity is given as hY i ¼ 0:0 (i.e.,
the geometric mean saturated hydraulic conductivity KG ¼ 1:0 ½L=T �, where T is any consistent time unit).

For simplicity, it is assumed in the following examples that the log saturated hydraulic conductivity

Y ðxÞ ¼ lnKsðxÞ is second-order stationary with a separable exponential covariance function

CY ðx; yÞ ¼ CY ðx1; x2; y1; y2Þ ¼ r2
Y exp

�
� jx1 � y1j

g
� jx2 � y2j

g

�
; ð50Þ
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where g is the correlation scale. In this case, eigenvalues kn, n ¼ 1; 2; . . . ; and their corresponding eigen-

functions fn, n ¼ 1; 2; . . . ; can be determined analytically by first solving Eq. (12) for w and computing k
based on (10), and then combining eigenvalues and eigenfunctions from each dimension using (13) and (14).

The eigenvalues are monotonically nonincreasing as illustrated in Fig. 1(a) for case 1 to case 3 with

different correlation lengths. Note that the product of two monotonically decreasing series may not be

monotonically decreasing. Fig. 1(b) shows the sum of eigenvalues as a function of terms included. The

figure indicates that for the case with a large correlation length, only a few terms are required to ap-

proximate Y 0 defined in Eq. (8), while for a relatively small correlation length, a larger number of terms are

needed to approximate Y 0 with a reasonable accuracy. Some of the eigenfunctions for case 2 are depicted in

Fig. 2. Any realization of log hydraulic conductivity is a summation of an infinite number of such eigen-

functions fn weighted by the product of
ffiffiffi
k

p
n and an independently generated Gaussian random variable nn.

The terms in series (8) not only statistically decrease in magnitude (the nth term has a zero mean and a

variance of knf 2
n ðxÞ whose average over domain D is kn that decreases with the increase of n) but also reduce

in scale. By approximating Y 0 as a summation of a finite number rather than an infinite number of terms,

one in fact ignores the small-scale variation of log hydraulic conductivity.

To investigate the applicability of the proposed KLME approach, we designed a series of numerical runs

with different correlation lengths g and various degrees of spatial variability r2
Y . Cases 1–3 aim to investigate

the effects of correlation lengths (g ¼ 1, 4, and 10, respectively) on the KLME approach. In these cases, the

degree of spatial variability is kept at r2
Y ¼ 1:0, corresponding to CV ¼ 131% where CV is the coefficient of

variation of hydraulic conductivity. Cases 4–6 are compared against case 2 to examine the impact of log

hydraulic conductivity variability (r2
Y ¼ 0:25, 2.0, and 4.0, respectively, which correspond to CV ¼ 53%,

253%, and 732%). The number of terms included in approximating hðmÞi1;i2;...;im for all cases are 100, 40, 30, 20,

and 10 for m ¼ 1, 2, 3, 4, and 5, respectively, except for case 1 in which the number of terms in approxi-

mating hð1Þn is 500 instead of 100. It should be noted that, for the purpose of comparison, we have included

sufficiently large numbers of terms in these approximations. The effect of the numbers of terms retained in

approximations will be discussed later.

For the purpose of comparison, we conducted Monte Carlo simulations. For each case, we use 5000 two-
dimensional unconditional realizations generated on the grid of 41� 41 nodes with the separable covariance

function given in (50), based on (8) with 200 terms. The quality of these realizations are examined for each case

by comparing their sample statistics (mean, variance, and correlation length) of these realizations with the

specified mean and covariance functions. The comparisons show that the generated random fields reproduce

the specified mean and covariance functions very well. The steady state, saturated flow equation is solved for

each realization of the log hydraulic conductivity, using finite-element heat- and mass-transfer code (FEHM)

developed byZyvoloski et al. [33]. Then, the sample statistics of the flowfield, i.e., themean prediction of head
Fig. 1. Series of eigenvalues and their finite sums for two-dimensional square flow domain with a separable covariance function of

correlation length: (a) g ¼ 1:0; (b) g ¼ 4:0; and (c) g ¼ 10:0.



Fig. 2. Examples of eigenfunctions fn for case 1: (a) f1; (b) f4; (c) f10; and (d) f20.
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as well as its associated uncertainty (variance), are computed from the realizations. These statistics are con-

sidered the ‘‘true’’ solutions that are used to compare against the proposed higher-order KLME approach.

We also compared the results from the KLME approach against those from the conventional first-order

moment-equation-based approach (CME), as developed by Zhang and Lu [31]. Here the covariance

function of log hydraulic conductivity used in this study is in a separable form, i.e., (50), rather than ex-

ponential form as in [31]. It is expected that, while the higher-order approximations of head variance from
the KLME approach should be close to Monte Carlo results, their first-order approximations shall be

almost identical to those from the conventional moment-equation-based approach, if n1, the number of

terms included in hð1Þ of (23), is sufficiently large. That is to say, the closeness of the first-order variances

derived from the conventional moment-equation-based approach and from the KLME approach is an

indicator showing if n1 is large enough.
7. Results and discussions

7.1. Effect of the correlation length g

Due to the particular boundary configurations in our examples, the mean head computed from different

approaches do not have significant difference and therefore will not be discussed. Here we focus our
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discussion only on head variance. We should mention here that in the following discussion, the order of

approximations for head variance is in terms of r2
Y .

Fig. 3 compares the head variance from Monte Carlo simulations, the CME approach, and the KLME
approach up to third-order in r2

Y , for different correlation lengths. Fig. 3(a) indicates that, for the case with

a small correlation length, both the first-order CME approach and the first-order KLME approach yield

almost identical head variance as the Monte Carlo simulations, even though the spatial variability is as

large as r2
Y ¼ 1:0, indicating that 500 terms are sufficient to approximate hð1ÞðxÞ in (23). The computational

effort for solving each term in the hð1Þn ðxÞ series of (25) is equivalent to that for CYhðx; yÞ for each reference

point y, and the derivation of the (first-order) covariances CYh and Ch from hð1Þn ðxÞ involves only simple

algebraic operations. As mentioned before, it requires to solve the CYhðx; yÞ and Chðx; yÞ equations about
2N times in the conventional moment-equation-based approach (in this case, N ¼ 1681). Therefore, for this
case the KL-based approach is computationally more efficient than the conventional moment-equation-

based approach.

In addition, for relatively large correlation lengths, the first-order approximations (for both CME and

KLME) of head variance deviate from Monte Carlo results. To predict head variance more accurately,

higher-order approximations are required. Fig. 3(b) and (c) show that second-order (in r2
Y ) approximations

are very close to Monte Carlo results, though third-order (in r2
Y ) approximations are better and almost

identical to Monte Carlo results. Note that solving first-order head variance for case 2 and 3 using the

KLME approach, it requires only 100 times to solve sets of linear algebraic equations of N unknows,
compared to 2N (¼ 3362) times for the first-order CME approach.

As shown in Fig. 1, the number of terms needed to be retained in the expansions increases with the

decreases of the correlation length g. When the ratio of the correlation length to the domain size (g0) is small

which is very likely the case for simulating large-scale problems, first-order approximations may be accurate

enough (for a moderate variability r2
Y ) as the higher-order terms are found to be negligible. Thus, such a

case can still be handled efficiently with the first-order KLME approach. With the increase of g0, as ex-
Fig. 3. Comparisons of head variance (along the cross-section x2 ¼ 5:0) derived from MC, CME, and KLME up to third-order in r2
Y ,

for cases with correlation length: (a) g ¼ 1:0; (b) g ¼ 4:0; and (c) g ¼ 10:0.
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plained later in Fig. 8 the higher-order corrections become important while the number of terms required to

retain in the expansions decreases.

7.2. Effect of spatial variability r2
Y

To explore the effect of spatial variability r2
Y on validity of the proposed KL-based moment approach,

we examined three more cases (cases 4, 5, and 6), together with case 2, with the same correlation length

(g ¼ 4:0) but various degrees of spatial variability (r2
Y ¼ 0:25, 1.0, 2.0, and 4.0). Comparisons of the head

variance derived from Monte Carlo simulations, the first-order CME approach, and the KLME approach

up to third-order in r2
Y are illustrated in Fig. 4. As expected, when r2

Y is small (Fig. 4(a)), head variance

obtained from different approaches do not have significant differences. For all cases, the first-order (in r2
Y )

head variance from the CME approach is the same as the first-order solution from the KLME approach for

all four cases examined, simply implying that the number of terms (n1 ¼ 100) included in hð1Þ are adequate
to approximate hð1Þ. Comparing to the first-order CME approach, with the increase of r2

Y , the advantage of

the KLME approach is obvious. At r2
Y ¼ 1:0, the estimation error of head variance (at the center of the

domain) introduced by the first-order CME approach (and also the first-order KLME approach) is 17.3%,

while the estimation error is 3.4% for the second-order solution of the KLME approach and 1.1% for the

third-order solution of the KLME approach. At r2
Y ¼ 2:0, the estimation error of head variance for

the first-order solutions is 33.6%, while they are 14.4% and 6.6%, respectively, for the second-order and the
third-order solutions of the KLME approach.

When the porous media are strongly heterogeneous (case 6, r2
Y ¼ 4:0), though higher-order corrections

of the KLME approach make some improvement on estimating head variance over the first-order solution

of the CME approach, the variance still deviates greatly from that from Monte Carlo simulations, as shown

in Fig. 4(c). We tried to increase the numbers of terms included in hðiÞðx; tÞ, i ¼ 1; 5; and found that this does
Fig. 4. Comparisons of head variance (along the cross-section x2 ¼ 5:0) derived from MC, CME, and KLME up to third-order in r2
Y ,

for the cases with: (a) r2
Y ¼ 0:25; (b) r2

Y ¼ 2:0; and (c) r2
Y ¼ 4:0.
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not make a significant improvement. We suspect that for such highly heterogeneous porous media, we may

need to include terms of even higher order in Eq. (44). For example, to compute head variance up to fourth-

order in r2
Y , we have to include up to seventh-order terms in (44). The slow convergence is further discussed

later with Fig. 9.

7.3. Effect of the number of terms in expansions

The advantage of the proposed KL-based moment approach largely depends on how many terms are

required to approximate hðmÞi1;i2;...;im . In the examples shown above, for the purpose of comparison, we included

relatively large numbers of terms in these approximations. However, the numbers of terms included in these

approximations can be much less. Here we take case 2 as an example. Fig. 5 depicts the values of hðmÞi1;i2;...;im at
the center of the domain for various orders m and indices. It is seen that the magnitude of hðmÞ decreases
with m. For example, the maximum absolute value of hð1Þi is about one order larger than that of hð2Þij , and the

maximum absolute value of hð3Þijk is about one order larger than that of hð4Þijkl. Furthermore, for a fixed m, the
magnitude of hðmÞi1;i2;...;im decreases statistically as the increase of indices. This allows us to take only small

numbers of terms in approximating hðmÞ.
We reduce the numbers of terms included in approximating hð1Þi , hð2Þij , h

ð3Þ
ijk , h

ð4Þ
ijkl, and hð5Þijklm to 100, 10, 10, 5,

and 5, respectively, i.e., index i in hð1Þi running up to 100 and each index in hð2Þij running up to 10, and so on.

For instance, Eqs. (25)–(28) need to be solved for 100 times, and Eqs. (30)–(33) need to be solved for 55
times (noting that hð2Þij is symmetric with respect to indices i and j). The total number of times to solve

similar equations to obtain hð1Þi , hð2Þij , h
ð3Þ
ijk , h

ð4Þ
ijkl, and hð5Þijklm will be 100þ 55þ 220þ 70þ 75 ¼ 520, which is

much less than the number of Monte Carlo simulations (at the order of few thousands) required at r2
Y ¼ 1:0

and also less than the number of times for solving the CYhðx; yÞ and Chðx; yÞ covariance equations
Fig. 5. Values of hðmÞi1 ;i2 ;...;im at the center of the domain for case 2 (a) hð1Þi ; (b) hð2Þij ; (c) hð3Þijk ; and (d) hð4Þijkl.



Fig. 6. Comparisons of r2
h (along the cross-section x2 ¼ 5:0) derived from MC, CME, and KLME to third-order in r2

Y for case 2 with

100, 10, 10, 5, and 5 terms in approximating hð1Þ, hð2Þ, hð3Þ, hð4Þ, and hð5Þ, respectively.
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(2N ¼ 3362, in this case) in the first-order CME approach. We have to emphasize that the total compu-

tational requirement for solving up to third-order approximation using the KLME approach is still less

than that required by the first-order CME approach.

Fig. 6 shows the head variance at different order of approximations, for case 2, computed using reduced
numbers of terms in approximating hð1Þi , hð2Þij , h

ð3Þ
ijk , h

ð4Þ
ijkl, and hð5Þijklm. Compared to Fig. 3(b) where the respective

terms are 100, 40, 30, 20, and 10, it is seen that the behaviors observed with reduced numbers of terms are

almost the same as in Fig. 3(b). For this case, higher-order approximations with only a few leading terms

capture most of the variability of head variance.

As mentioned earlier, when the correlation length is relatively small, the number of terms, n1, required to

approximate hð1Þðx; tÞ in (23) should be large. To investigate how the accuracy of estimations depending on

n1, we ran a few more cases in which all parameters are the same as in case 1 but with a decreasing number

of terms n1 ¼ 100 and n1 ¼ 200, as compared with n1 ¼ 500 in case 1 (g ¼ 1:0). The head variance com-
puted using different numbers of terms n1 is illustrated in Fig. 7. The figure indicates that 100 terms are

enough to approximate hð1Þðx; tÞ in (23) for this case. This can also be seen from Fig. 8, where values of

hðmÞi1;i2;...;im at the center of the domain are plotted against their indices. Fig. 8 also explains why high-order

terms do not have significant contributions to head variance as shown in Fig. 3(a). Although at each order

they decay at a slower rate, the higher-order coefficients hðmÞi1;i2;...;im for case 1 are much smaller than their

counterparts presented in Fig. 5 for case 2 (g ¼ 4:0).
When the correlation scale g is fixed (relative to the domain szie), the patterns of the head coefficient

terms hðmÞi1;i2;...;im do not change at each order regardless of rY . Fig. 9 shows the values of hðmÞi1;i2;...;im at the center
Fig. 7. Comparisons of head variance r2
h (along the cross-section x2 ¼ 5:0) for case 1 derived from MC, the first-order CME, and the

first-order KLME with 200, 500, and 1000 terms in approximating hð1Þ in (23).



Fig. 8. Values of hðmÞi1 ;i2 ;...;im at the center of the domain for case 1: (a) hð1Þi ; (b) hð2Þij ; (c) hð3Þijk ; and (d) hð4Þijkl.

Fig. 9. Values of hðmÞi1 ;i2 ;...;im at the center of the domain for case 6: (a) hð1Þi ; (b) hð2Þij ; (c) hð3Þijk ; and (d) hð4Þijkl.
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of the domain for various orders m and indices for case 6 where g ¼ 4 and rY ¼ 2. Fig. 9 can be obtained

from Fig. 5 via rescaling hð1Þi , hð2Þij , h
ð3Þ
ijk , and hð4Þijkl, respectively, by 2, 4, 8, and 16. Although at each order the

patterns are exactly the same as those in Fig. 5, the relative magnitudes for various orders are significantly
different in Fig. 9. The second-order coefficients hð2Þij are still approximately one order of magnitude smaller

than the first-order counterparts hð1Þi . However, the third-order coefficients hð3Þijk are at the same order as hð2Þij .

Likewise, the fourth-order coefficients hð4Þijkl are not much smaller than hð3Þijk . This explains the slow conver-

gence observed in Fig. 4(c) for case 6. It is fully expected that a further increase of rY may lead to di-

vergence. Future studies shall pinpoint the exact validity range of the proposed approach and explore the

possibility of developing more efficient expansions for handling extremely large variabilities.
8. Summary and conclusions

In this study, we combined the moment-equation approach with the Karhunen–Lo�eve and polynomial

expansions to evaluate higher-order moments for saturated flow in randomly heterogeneous porous media.

We first decomposed the log hydraulic conductivity into an infinite series related to eigenvalues and ei-

genfunctions of the covariance function of log hydraulic conductivity as well as a set of standard Gaussian

random variables. By assuming that the covariance function CY is separable and that the simulation domain

is rectangular in two-dimensional cases or brick-shaped in three-dimensional cases, the eigenvalues and
eigenfunctions can be derived analytically. In general, however, for other covariance functions the eigen-

values and eigenfunctions have to be solved numerically. We then decomposed the head into a series whose

terms hðnÞ are nth order in terms of rY . By further assuming that hðnÞ can be expanded into a series in terms

of the product of n Gaussian random variables used in expanding Y , we arrived at sets of equations for

determining the deterministic coefficients in these expansions. Unlike in the polynomial chaos expansion

approach of Ghanem and Spanos [8] or the generalized polynomial chaos expansion of Xiu and Karni-

adakis [28] where all the equations governing the coefficients are coupled, the equations from the present

approach are recursive in that the high-order equations depend on the lower-order ones but not vice versa.
In addition, in the present approach the order of approximation is clear for each term in terms of rY

whereas in those of [8,28] the level of approximation is mixed in each term of the expansions with respect to

rY .

Once the coefficients are solved, the mean head and head covariance can be computed directly without

solving additional equations. The moment-equation approach based on Karhunen–Lo�eve decomposition

(KLME) allows us to evaluate mean head up to fourth-order in rY and head covariance up to third-order in

r2
Y . We demonstrated the KLME approach with some examples of steady state saturated flow in a two-

dimensional rectangular domain and compared our results with those from Monte Carlo simulations and
from the conventional first-order moment-equation based approach. This study leads to the following

major conclusions:

1. The moment-equation approach based on Karhunen–Lo�eve decomposition (KLME) makes it possible

to evaluate higher-order flow moments with relatively small computational efforts.

2. To first-order in the variance of log hydraulic conductivity (i.e., r2
Y ), the KLME approach gives results

that are consistent with those by the CME approach. Owing to the rapid convergence of the first-order

head term expansion (23), the first-order KLME approach is generally much more efficient than the

CME approach for the cases considered in this study under a wide range of correlation lengths and var-
iability levels.

3. In general, the agreement between the KLME and Monte Carlo simulation results improves with the

decrease of r2
Y , with the reduction of the correlation scale (i.e., g) relative to the domain size, and with

the increase of the order in the KLME approximations. For r2
Y ¼ 1 and g ¼ 1, even the first-order

KLME approximation gives very accurate results for the head moments. For g ¼ 4 and 10, the KLME
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approach give results closer to those by Monte Carlo simulations when higher-order terms are included.

The third-order KLME approximation is accurate and efficient at least for r2
Y as large as 2.0 (corre-

sponding to the coefficient of variation being 253%) and g as large as 4.0. Our examples reveal that

the KLME approach is generally more efficient computationally than the Monte Carlo method.
4. The efficiency of the KL-based moment method depends on the ratio of the correlation length to the

domain size. Small correlation length requires more terms in expansions of hðnÞ and thus requires more

computational efforts. However, it seems that, when the ratio is small, first-order approximations is ac-

curate enough and thus the computational costs for the KLME approach is still much less than that re-

quired for the CME approach.
Appendix A

To find eigenvalues and eigenfunctions for a one-dimensional stochastic process with an exponential

covariance CY ðx1; y1Þ ¼ r2
Y expð�jx1 � y1j=gÞ, where r2

Y and g are the variance and correlation length of the

process, respectively, from definition, one has

kf ðx1Þ ¼ r2
Y

Z
D
e�jx1�y1j=gf ðy1Þdy1: ðA:1Þ

Taking derivative of (A.1) with respect to x1 yields

k
r2
Y

f 0ðx1Þ ¼ � 1

g

Z x1

0

eðy1�x1Þ=gf ðy1Þdy1 þ
1

g

Z L

x1

eðx1�y1Þ=gf ðy1Þdy1: ðA:2Þ

Taking derivative again gives an equation for eigenfunction f ðxÞ:

f 00ðx1Þ þ
2gr2

Y � k
kg2

f ðx1Þ ¼ 0: ðA:3Þ

The boundary conditions associated with (A.3) can be determined from (A.2) by letting x1 ¼ 0 and x1 ¼ L:

gf 0ð0Þ ¼ f ð0Þ; gf 0ðLÞ ¼ �f ðLÞ: ðA:4Þ

The general solution of Eq. (A.3) is

f ðxÞ ¼ a cosðwxÞ þ b sinðwxÞ; ðA:5Þ

where w2 ¼ ð2gr2
Y � kÞ=ðkg2Þ. By using two boundary conditions in (A.4), one obtains two linear equations

for determining coefficients a and b in (A.5).

a� gwb ¼ 0;

½ � wg sinðwLÞ þ cosðwLÞ�aþ wg cosðwLÞ½ þ sinðwLÞ�b ¼ 0:
ðA:6Þ

Limiting to nontrivial solutions of (A.6) yields an equation for w,

ðg2w2 � 1Þ sinðwLÞ ¼ 2gw cosðwLÞ; ðA:7Þ

which is (12). For given g and L, we can solve w from (A.7), which yields a series of (positive) wn,

n ¼ 1; 2; . . .. The eigenvalue corresponding to wn can be found from the definition of w:

kn ¼
2gr2

Y

g2w2
n þ 1

: ðA:8Þ



D. Zhang, Z. Lu / Journal of Computational Physics 194 (2004) 773–794 793
Certainly, different wn gives different coefficients a and b in Eq. (A.5), thus the eigenfunction associated with

wn or kn is

fnðxÞ ¼ an cosðwnxÞ þ bn sinðwnxÞ; ðA:9Þ

where the coefficients an and bn can be determined by the condition that eigenfunctions are normalized, i.e,R
D f

2
n ðxÞ ¼ 1. The latter leads to

bn ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðg2w2
n þ 1ÞL=2þ g

p ;

an ¼ gwnbn:

ðA:10Þ

Note that while eigenvalues kn are proportional to r2
Y , the eigenfunctions fnðxÞ are independent of r2

Y and

depend only on the domain size L and the correlation length g.
For a large domain size, solving (A.7) may be problematic. The equation can be solved more easily by

using dimensionless formulation. Let x0 ¼ x=L, w0 ¼ wL, and g0 ¼ g=L, (A.7) becomes

ðg02w02 � 1Þ sinðw0Þ ¼ 2g0w0 cosðw0Þ; ðA:11Þ

Note that w0 depends only on g0, the ratio of the correlation length to the domain size. It can be shown

that the corresponding terms k0n ¼ kn=L, a0n ¼ an
ffiffiffi
L

p
, b0n ¼ bn

ffiffiffi
L

p
, and f 0

nðxÞ ¼ fn
ffiffiffi
L

p
. This leads toffiffiffiffiffi

kn
p

fnðxÞ �
ffiffiffiffiffi
k0n

p
f 0
nðx0Þ. Because

ffiffiffiffiffi
kn

p
and fnðxÞ appear always together in derivation of the KL-based mo-

ment equations, we can directly use k0n and f 0
nðx0Þ derived from solving (A.11), without transforming them

back to the original space. One of the advantages of the dimensionless formulation is that the structures of

eigenfunctions depend only on the ratio of the correlation length to the domain size, and are independent of

the actual domain size.

We should emphasize here that we only need to solve one characteristic equation, i.e., (A.7), while in

literature [9] wn are solved from the following two characteristic equations:

wg tanðwLÞ � 1 ¼ 0; ðA:12Þ
wgþ tanðwLÞ ¼ 0; ðA:13Þ

respectively, and then taking wn from the first equation for even n or from the second equation for odd n.
Similarly, both eigenvalues kn and their eigenfunctions fnðxÞ are chosen from those corresponding to these

two characteristic equations for even or odd n. Certainly, our approach saves computational effort and

reduces complexity.

As a matter of fact, (A.12) and (A.13) can be combined into (A.7). It can be shown that roots of Eqs.

(A.12) and (A.13) do not overlap, thus combining (A.12) and (A.13) into (A.7) will not lose any roots.
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